• AnotherOne@feddit.de
      link
      fedilink
      arrow-up
      4
      ·
      2 years ago

      If you cut perfectly, which is impossible because you won’t count or split atoms (and there is a smallest possible indivisible size). Each slice is a repeating decimal 0.333… or in other words infinitely many 3s. (i don’t know math well that’s just what i remember from somewhere)

      • myusernameisokay@lemmy.world
        link
        fedilink
        arrow-up
        5
        ·
        2 years ago

        If the number of atoms is a multiple of 3, then you can split it perfectly.

        For example say there’s 6 atoms in a cake, and there’s 3 people that want cake. Each person gets 2 atoms which is one third of the cake.

        • AnotherOne@feddit.de
          link
          fedilink
          arrow-up
          1
          ·
          edit-2
          2 years ago

          The main problem is simply that math is “perfect” and reality isn’t. Since math is an abstract description of causality while reality doesn’t/can’t really “do” infinity.

          But if you really wanted to, you could bake a cake in a lab with a predetermined number of atoms and then split that cake into 3 perfect slices. However, once you start counting multiples(like atoms in a cake) you would no longer get 1/3 or 0.3 because you are now dividing a number bigger than 1(the number of atoms) so you would’t get a fraction(0.3) You would get a whole number.

    • bdonvr@thelemmy.club
      link
      fedilink
      arrow-up
      3
      ·
      2 years ago

      Technically no

      0.3333… repeats infinitely. The 0.333…4 is not an infinitely repeating number. And since 0.333… is, there’s no room to add that 4 anywhere

      Which is why adding them up you get 0.999… which is exactly and completely equal to 1