• ConsciousCode@beehaw.org
    link
    fedilink
    arrow-up
    1
    ·
    1 year ago

    LLMs are not expert systems, unless you characterize them as expert systems in language which is fair enough. My point is that they’re applicable to a wide variety of tasks which makes them general intelligences, as opposed to an expert system which by definition can only do a handful of tasks.

    If you wanted to use an LLM as an expert system (I guess in the sense of an “expert” in that task, rather than a system which literally can’t do anything else), I would say they currently struggle with that. Bare foundation models don’t seem to have the sort of self-awareness or metacognitive capabilities that would be required to restrain them to their given task, and arguably never will because they necessarily can only “think” on one “level”, which is the predicted text. To get that sort of ability you need cognitive architectures, of which chatbot implementations like ChatGPT are a very simple version of. If you want to learn more about what I mean, the most promising idea I’ve seen is the ACE framework. Frameworks like this can allow the system to automatically look up an obscure disease based on the embedded distance to a particular query, so even if you give it a disease which only appears in the literature after its training cut-off date, it knows this disease exists (and is a likely candidate) by virtue of it appearing in its prompt. Something like “You are an expert in diseases yadda yadda. The symptoms of the patient are x y z. This reminds you of these diseases: X (symptoms 1), Y (symptoms 2), etc. What is your diagnosis?” Then you could feed the answer of this question to a critical prompting, and repeat until it reports no issues with the diagnosis. You can even make it “learn” by using LoRA, or keep notes it writes to itself.

    As for poorer data distributions, the magic of large language models (before which we just had “language models”) is that we’ve found that the larger we make them, and the more (high quality) data we feed them, the more intelligent and general they become. For instance, training them on multiple languages other than English somehow allows them to make more robust generalizations even just within English. There are a few papers I can recall which talk about a “phase transition” which happens during training where beforehand, the model seems to be literally memorizing its corpus, and afterwards (to anthropomorphize a bit) it suddenly “gets” it and that memorization is compressed into generalized understanding. This is why LLMs are applicable to more than just what they’ve been taught - you can eg give them rules to follow within the conversation which they’ve never seen before, and they are able to maintain that higher-order abstraction because of that rich generalization. This is also a major reason open source models, particularly quantizations and distillations, are so successful; the models they’re based on did the hard work of extracting higher-order semantic/geometric relations, and now making the model smaller has minimal impact on performance.